If it's not what You are looking for type in the equation solver your own equation and let us solve it.
r^2-12r=8
We move all terms to the left:
r^2-12r-(8)=0
a = 1; b = -12; c = -8;
Δ = b2-4ac
Δ = -122-4·1·(-8)
Δ = 176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{176}=\sqrt{16*11}=\sqrt{16}*\sqrt{11}=4\sqrt{11}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-4\sqrt{11}}{2*1}=\frac{12-4\sqrt{11}}{2} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+4\sqrt{11}}{2*1}=\frac{12+4\sqrt{11}}{2} $
| b=(-b)+2 | | 3n+3=-27 | | 3(5-x)=-38 | | -1/5t=2 | | -16+4x=32+10x | | 5x+6=-59-9x | | 32(7+25)=37(10x-70)=45 | | 3x+20+5x−16=180 | | 32(7+25)=37(100x-70)=45 | | 9-h÷4/5;h=1/3 | | 5x+6=59-8x | | 6x–11=49+2x | | 3(7+25)=37(100x-70)=45 | | (3x+20)°+(5x−16)°=180 | | x+2=(-x)-2 | | -2(x+(-5)=20(24x+(-10)+4 | | -33=3x-1-7x | | 3x-4=13x114 | | 54+42x=180 | | -9x+1=-80 | | 25=115-x | | 4h+-6=22 | | -2(x+(-5)=20(2x+(-10)+4 | | 4h+–6=22 | | -2(x+(-5)=20(2x+(-10) | | 5x+2=5-2 | | -2(x+5)=20(2x+(-10) | | 4h+-8=22 | | -2(x+5)=20(2x+10) | | 2(x+5)=20(2x+10) | | 7=3/4k | | 64=8(b−84) |